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Overview 

• Background: 
– Piezocomposite technology and aeronautics applications 

(SOA) 
– Self-latching piezocomposite concept (this effort) 

• Phase I activities: 
– Self-latching actuator proof-of-concept demonstration 
– Mathematical model validation efforts 
– Optimization for self-latching 

• Future work; Phase II plans: 
– Self-latching control surface fabrication 
– Wind tunnel validation 
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Piezocomposite Actuators 

AFC 
(Bent, Hagood, et al, 1993-2000) 
 

MFC 
(NASA, 1997-2003) 
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3. Active Composite 
Structure 

2. Active Fiber 
Composite Plies 

4. Active Twist 
Control 

    Active Twist Rotor In Wind Tunnel 

1. Piezoelectric 
Composite 
Actuator 

Active Blade Twist Control for 
Vibration Reduction 
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Solid-State Piezocomposite Control for 
Small Aircraft 

http://www.youtube.com/user/VTWMD 

Ref: Bilgen, 2013 

file://localhost/Users/dbazar/Library/Caches/TemporaryItems/Outlook%20Temp/WMD_Video_Short.wmv
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2. Power-off latched state 

3. Repoling reset state 0. Initial (or return) power-off unlatched state 

1. Unpoling state 

Can we create a piezocomposite control 
surface that does not require power to 
maintain a deflection? 

Ref: Uchino, K., “Recent Trend of Piezoelectric 
Actuator Developments,” IEEE International 
Symposium on Micromechatronics and Human 
Science, 1999. 

Shape Memory Ceramics 
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Is there a self-latching effect in MFC 
piezocomposites? 

• Several tests ran in which the MFC is 
fully poled and then a negative back 
field is applied. 

• Negative back field ranged from 0 to 
-2500V in increments of -100V. 

Initial Test 

• Remnant strain can be 
controlled with partial 
poling/depoling. 

• By varying the back field 
magnitude, the effect on the 
remnant polarization is 
found. 

Goal 
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Latching effect proof-of-concept with 
PZT-5H-based MFC demonstrated 

• Varied back field initially causes 
partial depoling which reduces 
remnant strain. 

• Eventually increasing back field 
causes the material to repole and 
the remnant strain increases. 

Results 
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Can we model and predict or 
design for this effect? 
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FEM Discretized Governing Equations: 
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Linear Piezoelectric Finite Element Formulation 



NASA Aeronautics Research Institute 

FEM Model 

Micromechanical Switching Routine 

• Stress, electric field and remnant values dictated by linear FEM. 
• No grain to grain interactions 
• Switching criterion reorients the grain changing the remnant polarization and 

remnant strain.  This is fed back into the linear FEM code. 

General Description 

r r
i i kl kl abPE WV' � t'ò

Switching Criterion 
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FEM Model 

Linear Piezoelectric Example 

Ferroelectric Example 

• Two videos illustrate key 
difference between 
ferroelectric and linear 
piezoelectric materials 
 

• The first video is unable to 
switch polarization 
directions regardless of 
external fields, while the 
2nd video exhibits a 
butterfly hysteresis loop 
behavior. 

Linear vs Ferroelectric  
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FEM Model 

MFC Geometry Parameters to be Varied For FEM Simulations 
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FEM Model 

• From initial observation of dead 
region it makes sense that at L2/L 
increases that d33 would go down 

• Why does it peak at a non zero 
maximum? 

• L2/L was accomplished by holding L 
and other parameters constant and 
varying L2.  Thus other ratios 
changed L2/D and L2/H 

Varying L2/L 

Remnant Polarization Evolution 
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FEM Model 

Gauss’ Law 

Gauss’ law applied to the same material under the same boundary conditions. 

Explanation 
• D2 is limited by the saturation 

polarization of the material 
• This is only slightly larger than the 

remnant polarization value of 0.35 
C/m2.   

• When the electrode contact area (A2) is 
less than the fiber cross sectional area 
(A1) ,  the fiber cannot be polarized 

• Ideally 2L2/H=1 for smallest electrode 

1* 2*
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FEM Model 

• Plotting a variation of the relative 
electrode area, 2L2/H=1 shows 
maximum 

• For single sided electrode, 2L2/H=1 
doesn’t work.  To equate electrode 
area to cross sectional area, L2/H=1. 

• D33 is highly dependent on two 
parameters.  A fight between relative 
electrode area and relative electrode 
length. 

• What about the fiber other 
parameters?  Fiber length to depth? 
 

Varying 2L2/H 
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Model validation studies 

Height 1               
    L2/H 1.5 0.75 0.5 0.25 0.141667 
  (L-L2)/H             
  1   Specimen 1 Specimen 2 Specimen 3 Specimen 4 Specimen 5 
  2   Specimen 6 Specimen 7 Specimen 8 Specimen 9 Specimen 10 
  2.5   Specimen 11 Specimen 12 Specimen 13 Specimen 14 Specimen 15 
  3   Specimen 16 Specimen 17 Specimen 18 Specimen 19 Specimen 20 
  3.5   Specimen 21 Specimen 22 Specimen 23 Specimen 24 Specimen 25 
Height 2   
    L2/H 1.5 0.75 0.5 0.25 0.141667 
  (L-L2)/H             
  1   Specimen 26 Specimen 27 Specimen 28 Specimen 29 Specimen 30 
  2   Specimen 31 Specimen 32 Specimen 33 Specimen 34 Specimen 35 
  2.5   Specimen 36 Specimen 37 Specimen 38 Specimen 39 Specimen 40 
  3   Specimen 41 Specimen 42 Specimen 43 Specimen 44 Specimen 45 
  3.5   Specimen 46 Specimen 47 Specimen 48 Specimen 49 Specimen 50 

• To confirm FEM model predictions, 
50 interdigitated PZT-5H plates 
ordered. 

• The plates have various patterned 
electrodes as shown below. 

• Tests currently underway 

Parametric Tests 

Example IDEs Ordered 
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New materials for optimizing desired 
self-latching behavior 

PLSnZT Strain Profile 

8/65/35 Strain Profile 

PLSnZT Material 

Die For PZT Manufacture  

• New materials being explored for use 
in MFC.  Two such are PLSnZT and 
8/65/35 PLZT. 
 

 

Exploration of Material 

• PLSnZT has large strain 
jumps due to phase 
transformations 

• 8/65/35 is a soft PLZT and 
would be useful for the 
latching effect. 
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Solid-state variable camber 
piezocomposite airfoil 

B5 

B4 

B3 

B2 
B1 

TE LE 

76% Actuator  
Coverage 

L1 L2 

B10 

B9 

B8 
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LE TE 

Root Profile 
Tip Profile 

Spar Structure 

Spar Structure 

Fixed Boundary Free Boundary 

Root: 

Tip: 

L1 L2 

Upper 
Surface: 

Lower 
Surface: 

Ref: Bilgen, 2013 
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Phase I Summary and Status 

• Phase I objectives: 
– Self latching piezocomposite proof-of-concept (non-optimized) 

demonstrated experimentally 
– Experimental validation of nonlinear FEM model underway: 

• Parametric actuator test coupon fabrication (100 test articles) complete, 
6/2013. 

• Testing underway, 7/2013. 
• Validated model will be used to design electrodes for optimized self-

latching actuator package (est. 8/2013) 
– “Exotic” piezoceramic material fabrication for improved self-latching 

actuator complete, 7/2013. 
• Materials to be incorporated into self-latching specimens in August. 

– Active airfoil preliminary concept defined 
• Self-latching piezocomposite can be a “drop-in” replacement for 

standard MFC in Bilgen deformable airfoils 
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Phase II future work 

• Phase II objectives: 
– NASA/UCLA to optimize “exotic” self-latching piezocomposite actuator 
– Prof. Bilgen (ODU) brought on board to design active airfoils 
– Set-and-hold capability of self-latching airfoils to be validated in low-

speed wind tunnel tests at ODU 
• Baseline and optimized self-latching piezocomposites to be tested 

• Planned publications/invention disclosures: 
– NTR filed (NTR 1375456665, 2 August 2013) 
– NASA TM on Phase I work (October 2013) 
– Conference presentations TBD (NASA travel dependent) 

• Cross-cutting applications interest: 
– Self-latching piezocomposite technology is cross-cutting with space 

and adaptive optics applications. 
– STMD funding sources to be sought to develop space applications. 
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Questions? 

July 9-11, 2013 NASA Aeronautics Research Mission Directorate FY12 Seedling Phase I Technical Seminar  21 
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